
AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 1

Q.2 a. What is a risk? Is it economical to do risk management? What is the effect of
this activity on the overall cost of the project?

Answer:
The ISO 31000 (2009) /ISO Guide 73:2002 definition of risk is the 'effect of uncertainty
on objectives'. In this definition, uncertainties include events (which may or not happen)
and uncertainties caused by ambiguity or a lack of information. It also includes both
negative and positive impacts on objectives. Many definitions of risk exist in common
usage, however this definition was developed by an international committee representing
over 30 countries and is based on the input of several thousand subject matter experts.
Many, however, disagree with any alteration of the common definition of the word "risk"
(possibility of loss or injury). Trying to include "positive impacts on objectives" within
the definition of the word "risk" causes confusion and great difficulty communicating
concepts.
Risk management is simply a practice of systematically selecting cost effective
approaches for minimizing the effect of threat realization to the organization. All risks
can never be fully avoided or mitigated simply because of financial and practical
limitations. Therefore all organizations have to accept some level of residual risks.
Whereas risk management tends to be preemptive, business continuity planning (BCP)
was invented to deal with the consequences of realized residual risks. The necessity to
have BCP in place arises because even very unlikely events will occur if given enough
time. Risk management and BCP are often mistakenly seen as rivals or overlapping
practices. In fact these processes are so tightly tied together that such separation seems
artificial. For example, the risk management process creates important inputs for the BCP
(assets, impact assessments, cost estimates etc.). Risk management also proposes
applicable controls for the observed risks. Therefore, risk management covers several
areas that are vital for the BCP process. However, the BCP process goes beyond risk
management's preemptive approach and assumes that the disaster will happen at some
point.
In the more general case, every probable risk can have a pre-formulated plan to deal with
its possible consequences (to ensure contingency if the risk becomes a liability).
From the information above and the average cost per employee over time, or cost accrual
ratio, a project manager can estimate:

• the cost associated with the risk if it arises, estimated by multiplying employee
costs per unit time by the estimated time lost (cost impact, C where C = cost
accrual ratio * S).

• the probable increase in time associated with a risk (schedule variance due to risk,
Rs where Rs = P * S):

o Sorting on this value puts the highest risks to the schedule first. This is
intended to cause the greatest risks to the project to be attempted first so
that risk is minimized as quickly as possible.

o This is slightly misleading as schedule variances with a large P and small
S and vice versa are not equivalent.

• the probable increase in cost associated with a risk (cost variance due to risk, Rc
where Rc = P*C = P*CAR*S = P*S*CAR)

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 2

o sorting on this value puts the highest risks to the budget first.
o see concerns about schedule variance as this is a function of it, as

illustrated in the equation above.

Risk in a project or process can be due either to Special Cause Variation or
Common Cause Variation and requires appropriate treatment. That is to
re-iterate the concern about extremal cases not being equivalent in the list
immediately above.

 b. Differentiate between generic and customised software products. Also give
a brief note on legacy system.

Answer:
Generic software development is the one done for "General Purpose" audience whist
"Custom Software Development" is done to satisfy a particular need of a particular client.
General Purpose software development is tough as compared with Custom made; not by
the skills required to develop the application but by the design and marketing point of
view.

In General Purpose application/product design and development, you will need to
"imagine" what an end-user require. Here, the term "end - user" has no face; you have to
imagine it. Market Surveys and general Customer Demand analysis may help a company
to reduce the risk factor and think about some innovations over existing similar solutions.

On the other hand, in Custom Made application/product development, you have a specific
face of "end - user" in front of you. You know whom you need to satisfy. Understanding
the need and Analyzing it to get the best out of it is a challenge here. Planning and
reaching the goals within dead-line adds a value to your software development excellence
as a professional service provider.

By Buyer's (or Client's) point of view, now a days it's preferred to have a Custom Made
application developed rather than buying a General Purpose software. You get the
application done that exactly matches your requirements and also most importantly your
style of computing. If you manage to find a quality Freelance Developer (or team) you're
50% done! If you successfully locate desired talent in Asian countries (such as India)
then it's a bonus; because $1 is still Re.40 here. So, the overall development cost for US
and Europian companies is likely to get slashed down by at least 40%.

A legacy system is an old method, technology, computer system, or application program.
The legacy system may or may not remain in use. Even if it is no longer used, it may
continue to impact the organization due to its historical role. Historic data may not have
been converted into the new system format and may exist within the new system with the
use of a customized schema crosswalk, or may exist only in a data warehouse. In either
case, the effect on business intelligence and operational reporting can be significant. For
a variety of reasons, a legacy system may continue to be used, sometimes well past its
vendor-supported lifetime, resulting in support and maintenance challenges. It may be
that the system still provides for the users' needs, even though newer technology or more

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 3

efficient methods of performing a task are now available. However, the decision to keep
an old system may be influenced by economic reasons such as return on investment
challenges or vendor lock-in, the inherent challenges of change management, or a variety
of other reasons other than functionality. A legacy system may include procedures or
terminology which are no longer relevant in the current context, and may hinder or
confuse understanding of the methods or technologies used.

The term "legacy" may have little to do with the size or age of the system — mainframes
run 64-bit Linux and Java alongside 1960s vintage code.

Although the term is most commonly used to describe computers and software, it may
also be used to describe human behaviors, methods, and tools. For example, timber
framing using wattle and daub is a legacy building construction method.

Organizations can have compelling reasons for keeping a legacy system, such as:

• The system works satisfactorily, and the owner sees no reason for changing it.
• The costs of redesigning or replacing the system are prohibitive because it is

large, monolithic, and/or complex.
• Retraining on a new system would be costly in lost time and money, compared to

the anticipated appreciable benefits of replacing it (which may be zero).
• The system requires near-constant availability, so it cannot be taken out of

service, and the cost of designing a new system with a similar availability level is
high. Examples include systems to handle customers' accounts in banks, computer
reservation systems, air traffic control, energy distribution (power grids), nuclear
power plants, military defense installations, and systems such as the TOPS
database.

• The way that the system works is not well understood. Such a situation can occur
when the designers of the system have left the organization, and the system has
either not been fully documented or documentation has been lost.

• The user expects that the system can easily be replaced when this becomes
necessary.

 c. Describe the various phases of a software development life cycle model.
Compare evolutionary development model and iterative enhancement
model.

Answer:
 Software Development Life Cycle (SDLC) adheres to important phases that are
essential for developers, such as planning, analysis, design, and implementation, and are
explained in the section below.It include evaluation of present system, information
gathering, feasibility study and request approval. A number of system development life
cycle (SDLC) models have been created: waterfall, fountain, spiral, build and fix, rapid
prototyping, incremental, and synchronize and stabilize. The oldest of these, and the best
known, is the waterfall model: a sequence of stages in which the output of each stage
becomes the input for the next. These stages can be characterized and divided up in
different ways, including the following

http://en.wikipedia.org/wiki/Monolithic_system
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Bank
http://en.wikipedia.org/wiki/Computer_reservation_system
http://en.wikipedia.org/wiki/Computer_reservation_system
http://en.wikipedia.org/wiki/Computer_reservation_system
http://en.wikipedia.org/wiki/Air_traffic_control
http://en.wikipedia.org/wiki/Power_grid
http://en.wikipedia.org/wiki/Nuclear_power_plant
http://en.wikipedia.org/wiki/Nuclear_power_plant
http://en.wikipedia.org/wiki/Nuclear_power_plant
http://en.wikipedia.org/wiki/TOPS

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 4

• Preliminary Analysis: The objective of phase 1 is to conduct a preliminary
analysis, propose alternative solutions, describe costs and benefits and submit a
preliminary plan with recommendations.

Conduct the preliminary analysis: in this step, you need to find out the
organization's objectives and the nature and scope of the problem under study.
Even if a problem refers only to a small segment of the organization itself then
you need to find out what the objectives of the organization itself are. Then you
need to see how the problem being studied fits in with them.
Propose alternative solutions: In digging into the organization's objectives and
specific problems, you may have already covered some solutions. Alternate
proposals may come from interviewing employees, clients, suppliers, and/or
consultants. You can also study what competitors are doing. With this data, you
will have three choices: leave the system as is, improve it, or develop a new
system.
Describe the costs and benefits.

• Systems analysis, requirements definition: Defines project goals into defined
functions and operation of the intended application. Analyzes end-user
information needs.

• Systems design: Describes desired features and operations in detail, including
screen layouts, business rules, process diagrams, pseudocode and other
documentation.

• Development: The real code is written here.

• Integration and testing: Brings all the pieces together into a special testing
environment, then checks for errors, bugs and interoperability.

• Acceptance, installation, deployment: The final stage of initial development,
where the software is put into production and runs actual business.

• Maintenance: What happens during the rest of the software's life: changes,
correction, additions, moves to a different computing platform and more. This is
often the longest of the stages.

In the following example (see picture) these stage of the systems development life cycle
are divided in ten steps from definition to creation and modification of IT work products:

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 5

Incremental development slices the system functionality into increments (portions). In
each increment, a slice of functionality is delivered through cross-discipline work, from
the requirements to the deployment. The unified process groups increments/iterations into
phases: inception, elaboration, construction, and transition.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 6

• Inception identifies project scope, requirements (functional and non-functional)
and risks at a high level but in enough detail that work can be estimated.

• Elaboration delivers a working architecture that mitigates the top risks and fulfills
the non-functional requirements.

• Construction incrementally fills-in the architecture with production-ready code
produced from analysis, design, implementation, and testing of the functional
requirements.

• Transition delivers the system into the production operating environment.

Each of the phases may be divided into 1 or more iterations, which are usually time-
boxed rather than feature-boxed. Architects and analysts work one iteration ahead of
developers and testers to keep their work-product backlog full.

Software Products can be perceived as evolving over a time period.

However, neither the Linear Sequential Model nor the Prototype Model apply this aspect
to software production. The Linear Sequential Model was designed for straight-line
development. The Prototype Model was designed to assist the customer in understanding
requirements and is designed to produce a visualization of the final system.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 7

But the Evolutionary Models take the concept of “evolution” into the engineering
paradigm. Therefore Evolutionary Models are iterative. They are built in a manner that
enables software engineers to develop increasingly more complex versions of the
software.

The Spiral Model is an evolutionary software process model that couples the iterative
nature of prototyping with the controlled and systematic aspects of the Linear Sequential
Model. Using the Spiral Model the software is developed in a series of incremental
releases. Unlike the Iteration Model where in the first product is a core product, in the
Spiral Model the early iterations could result in a paper model or a prototype. However,
during later iterations more complex functionalities could be added.

A Spiral Model, combines the iterative nature of prototyping with the controlled and
systematic aspects of the Waterfall Model, therein providing the potential for rapid
development of incremental versions of the software. A Spiral Model is divided into a
number of framework activities, also called task regions. These task regions could vary
from 3-6 in number and they are:

• Customer Communication - tasks required to establish effective communication
between the developer and customer.

• Planning - tasks required to define resources, timelines and other project related
information /items.

• Risk Analysis - tasks required to assess the technical and management risks.

• Engineering - tasks required to build one or more representation of the
application.

• Construction & Release - tasks required to construct, test and support (eg.
Documentation and training)

• Customer evaluation - tasks required to obtain periodic customer feedback so
that there are no last minute surprises.

Q.3 a. Discuss the general format of a SRS document and discuss its main
components in detail.

Answer:
REVISION HISTORY .. ERROR! BOOKMARK NOT DEFINED.

DOCUMENT APPROVAL... ERROR! BOOKMARK NOT DEFINED.

1. INTRODUCTION... 9
1.1 PURPOSE .. 9
1.2 SCOPE .. 9
1.3 DEFINITIONS, ACRONYMS, AND ABBREVIATIONS... 9

http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Linear_Sequential_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Linear_Sequential_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Linear_Sequential_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Iteration_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Waterfall_Model&action=edit
http://it.toolbox.com/wiki/index.php?title=Spiral_Model&action=edit

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 8

1.4 REFERENCES .. 9
1.5 OVERVIEW ... 9

2. GENERAL DESCRIPTION .. 9
2.1 PRODUCT PERSPECTIVE .. 9
2.2 PRODUCT FUNCTIONS .. 10
2.3 USER CHARACTERISTICS .. 10
2.4 GENERAL CONSTRAINTS .. 10
2.5 ASSUMPTIONS AND DEPENDENCIES.. 10

3. SPECIFIC REQUIREMENTS .. 10
3.1 EXTERNAL INTERFACE REQUIREMENTS ... 11

3.1.1 User Interfaces ... 11
3.1.2 Hardware Interfaces .. 11
3.1.3 Software Interfaces .. 11
3.1.4 Communications Interfaces ... 11

3.2 FUNCTIONAL REQUIREMENTS .. 11
3.2.1 <Functional Requirement or Feature #1> .. 11
3.2.2 <Functional Requirement or Feature #2> .. 11

3.3 USE CASES ... 11
3.3.1 Use Case #1 .. Error! Bookmark not defined.
3.3.2 Use Case #2 .. Error! Bookmark not defined.

3.4 CLASSES / OBJECTS .. ERROR! BOOKMARK NOT DEFINED.
3.4.1 <Class / Object #1> ... Error! Bookmark not defined.
3.4.2 <Class / Object #2> ... Error! Bookmark not defined.

3.5 NON-FUNCTIONAL REQUIREMENTS ... 11
3.5.1 Performance ... 11
3.5.2 Reliability ... 11
3.5.3 Availability ... 11
3.5.4 Security .. 11
3.5.5 Maintainability ... 11
3.5.6 Portability .. 11

3.6 INVERSE REQUIREMENTS ... 11
3.7 DESIGN CONSTRAINTS ... 12
3.8 LOGICAL DATABASE REQUIREMENTS .. 12
3.9 OTHER REQUIREMENTS .. 12

4. ANALYSIS MODELS .. 12
4.1 SEQUENCE DIAGRAMS ... 12
4.3 DATA FLOW DIAGRAMS (DFD) ... 12
4.2 STATE-TRANSITION DIAGRAMS (STD) .. 12

5. CHANGE MANAGEMENT PROCESS .. 12

A. APPENDICES .. 12
A.1 APPENDIX 1 ... ERROR! BOOKMARK NOT DEFINED.
A.2 APPENDIX 2 ... ERROR! BOOKMARK NOT DEFINED.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 9

1. Introduction
The introduction to the Software Requirement Specification (SRS) document should
provide an overview of the complete SRS document. While writing this document please
remember that this document should contain all of the information needed by a software
engineer to adequately design and implement the software product described by the
requirements listed in this document. (Note: the following subsection annotates are
largely taken from the IEEE Guide to SRS).

1.1 Purpose
What is the purpose of this SRS and the (intended) audience for which it is written.
1.2 Scope
This subsection should:
(1) Identify the software product(s) to be produced by name; for example, Host DBMS,

Report Generator, etc
(2) Explain what the software product(s) will, and, if necessary, will not do
(3) Describe the application of the software being specified. As a portion of this, it

should:
(a) Describe all relevant benefits, objectives, and goals as precisely as possible. For

example, to say that one goal is to provide effective reporting capabilities is not as
good as saying parameter-driven, user-definable reports with a 2 h turnaround and
on-line entry of user parameters.

(b) Be consistent with similar statements in higher-level specifications (for example,
the System Requirement Specification) , if they exist.What is the scope of this
software product.

1.3 Definitions, Acronyms, and Abbreviations
This subsection should provide the definitions of all terms, acronyms, and abbreviations
required to properly interpret the SRS. This information may be provided by reference to
one or more appendixes in the SRS or by reference to other documents.
1.4 References
This subsection should:
(1) Provide a complete list of all documents referenced elsewhere in the SRS, or in a

separate, specified document.
(2) Identify each document by title, report number - if applicable - date, and publishing

organization.
(3) Specify the sources from which the references can be obtained.
This information may be provided by reference to an appendix or to another document.
1.5 Overview
This subsection should:
(1) Describe what the rest of the SRS contains
(2) Explain how the SRS is organized.
2. General Description
This section of the SRS should describe the general factors that affect 'the product and its
requirements. It should be made clear that this section does not state specific
requirements; it only makes those requirements easier to understand.
2.1 Product Perspective

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 10

This subsection of the SRS puts the product into perspective with other related products
or
projects. (See the IEEE Guide to SRS for more details).
2.2 Product Functions
This subsection of the SRS should provide a summary of the functions that the software
will perform.

2.3 User Characteristics
This subsection of the SRS should describe those general characteristics of the eventual
users of the product that will affect the specific requirements. (See the IEEE Guide to
SRS for more details).

2.4 General Constraints
This subsection of the SRS should provide a general description of any other items that
will
limit the developer’s options for designing the system. (See the IEEE Guide to SRS for a
partial list of possible general constraints).

2.5 Assumptions and Dependencies
This subsection of the SRS should list each of the factors that affect the requirements
stated in the SRS. These factors are not design constraints on the software but are, rather,
any changes to them that can affect the requirements in the SRS. For example, an
assumption might be that a specific operating system will be available on the hardware
designated for the software product. If, in fact, the operating system is not available, the
SRS would then have to change accordingly.

3. Specific Requirements
This will be the largest and most important section of the SRS. The customer
requirements will be embodied within Section 2, but this section will give the D-
requirements that are used to guide the project’s software design, implementation, and
testing.

Each requirement in this section should be:

• Correct
• Traceable (both forward and backward to prior/future artifacts)
• Unambiguous
• Verifiable (i.e., testable)
• Prioritized (with respect to importance and/or stability)
• Complete
• Consistent
• Uniquely identifiable (usually via numbering like 3.4.5.6)

Attention should be paid to the carefuly organize the requirements presented in this
section so that they may easily accessed and understood. Furthermore, this SRS is not

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 11

the software design document, therefore one should avoid the tendency to over-constrain
(and therefore design) the software project within this SRS.

3.1 External Interface Requirements

3.1.1 User Interfaces

3.1.2 Hardware Interfaces

3.1.3 Software Interfaces

3.1.4 Communications Interfaces
3.2 Functional Requirements
This section describes specific features of the software project. If desired, some
requirements may be specified in the use-case format and listed in the Use Cases Section.

3.2.1 <Functional Requirement or Feature #1>
3.2.1.1 Introduction
3.2.1.2 Inputs
3.2.1.3 Processing
3.2.1.4 Outputs
3.2.1.5 Error Handling

3.2.2 <Functional Requirement or Feature #2>
…
3.3 Use Cases
3.5 Non-Functional Requirements
Non-functional requirements may exist for the following attributes. Often these
requirements must be achieved at a system-wide level rather than at a unit level. State
the requirements in the following sections in measurable terms (e.g., 95% of transaction
shall be processed in less than a second, system downtime may not exceed 1 minute per
day, > 30 day MTBF value, etc).

3.5.1 Performance

3.5.2 Reliability

3.5.3 Availability

3.5.4 Security

3.5.5 Maintainability

3.5.6 Portability
3.6 Inverse Requirements
State any *useful* inverse requirements.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 12

3.7 Design Constraints
Specify design constrains imposed by other standards, company policies, hardware
limitation, etc. that will impact this software project.

3.8 Logical Database Requirements
Will a database be used? If so, what logical requirements exist for data formats, storage
capabilities, data retention, data integrity, etc.

3.9 Other Requirements
Catchall section for any additional requirements.

4. Analysis Models
List all analysis models used in developing specific requirements previously given in this
SRS. Each model should include an introduction and a narrative description.
Furthermore, each model should be traceable the SRS’s requirements.

4.1 Sequence Diagrams
4.3 Data Flow Diagrams (DFD)
4.2 State-Transition Diagrams (STD)
5. Change Management Process
Identify and describe the process that will be used to update the SRS, as needed, when
project scope or requirements change. Who can submit changes and by what means, and
how will these changes be approved.

A. Appendices
Appendices may be used to provide additional (and hopefully helpful) information. If
present, the SRS should explicitly state whether the information contained within an
appendix is to be considered as a part of the SRS’s overall set of requirements.

Example Appendices could include (initial) conceptual documents for the software
project, marketing materials, minutes of meetings with the customer(s), etc.

 b. Explain the types of feasibility in requirement engineering? Discuss the

validity of using cost benefit analysis, especially in socially useful
applications.

Answer:
A feasibility study is an evaluation and analysis of the potential of the proposed project
which is based on extensive investigation and research to give full comfort to the
decisions makers. Feasibility studies aim to objectively and rationally uncover the
strengths and weaknesses of an existing business or proposed venture, opportunities and
threats as presented by the environment, the resources required to carry through, and
ultimately the prospects for success. In its simplest terms, the two criteria to judge
feasibility are cost required and value to be attained.[As such, a well-designed feasibility
study should provide a historical background of the business or project, description of the
product or service, accounting statements, details of the operations and management,
marketing research and policies, financial data, legal requirements and tax obligations.
Generally, feasibility studies precede technical development and project implementation.

http://en.wikipedia.org/wiki/Natural_environment
http://en.wikipedia.org/wiki/Resources
http://en.wikipedia.org/wiki/Success
http://en.wikipedia.org/wiki/Cost
http://en.wikipedia.org/wiki/Value
http://en.wikipedia.org/wiki/Product_%28business%29
http://en.wikipedia.org/wiki/Service_%28economics%29
http://en.wikipedia.org/wiki/Business_operations
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Marketing_research
http://en.wikipedia.org/wiki/Project

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 13

The acronym TELOS refers to the five areas of feasibility - Technical, Economic, Legal,
Operational, and Scheduling.

Technology and system feasibility
The assessment is based on an outline design of system requirements, to determine
whether the company has the technical expertise to handle completion of the project.
When writing a feasibility report, the following should be taken to consideration:

• A brief description of the business to assess more possible factor/s which could
affect the study

• The part of the business being examined
• The human and economic factor
• The possible solutions to the problems

At this level, the concern is whether the proposal is both technically and legally feasible
(assuming moderate cost).

Legal feasibility
Determines whether the proposed system conflicts with legal requirements, e.g. a data
processing system must comply with the local Data Protection Acts..

Operational feasibility
Operational feasibility is a measure of how well a proposed system solves the problems,
and takes advantage of the opportunities identified during scope definition and how it
satisfies the requirements identified in the requirements analysis phase of system
development.

Schedule feasibility
A project will fail if it takes too long to be completed before it is useful. Typically this
means estimating how long the system will take to develop, and if it can be completed in
a given time period using some methods like payback period. Schedule feasibility is a
measure of how reasonable the project timetable is. Given our technical expertise, are the
project deadlines reasonable? Some projects are initiated with specific deadlines. You
need to determine whether the deadlines are mandatory or desirable.

The following is a list of steps that comprise a generic cost-benefit analysis.[5]

a. List alternative projects/programs.
b. List stakeholders.
c. Select measurement(s) and measure all cost/benefit elements.
d. Predict outcome of cost and benefits over relevant time period.
e. Convert all costs and benefits into a common currency.
f. Apply discount rate.
g. Calculate net present value of project options.
h. Perform sensitivity analysis.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 14

i. Adopt recommended choice.

The value of a cost–benefit analysis depends on the accuracy of the individual cost and
benefit estimates. Comparative studies indicate that such estimates are often flawed,

Causes of these inaccuracies include

a) Overreliance on data from past projects (often differing markedly in function or
size and the skill levels of the team members)

b) Use of subjective impressions by assessment team members
c) Inappropriate use of heuristics to derive money cost of the intangible elements
d) Confirmation bias among project supporters (looking for reasons to proceed).

Interest groups may attempt to include or exclude significant costs from an analysis to
influence the outcome.
In the case of the Ford Pinto (where, because of design flaws, the Pinto was liable to
burst into flames in a rear-impact collision), the company's decision was not to issue a
recall. Ford's cost–benefit analysis had estimated that based on the number of cars in use
and the probable accident rate, deaths due to the design flaw would cost it about $49.5
million to settle wrongful death lawsuits versus recall costs of $137.5 million. Ford
overlooked (or considered insignificant) the costs of the negative publicity that would
result, which forced a recall and damaged sales.[35]
In health economics, some analysts think cost–benefit analysis can be an inadequate
measure because willingness-to-pay methods of determining the value of human life can
be influenced by income level. They support use of variants such as cost–utility analysis
and quality-adjusted life year to analyze the effects of health policies.[36]
In environmental and occupational health regulation, it has been argued that if modern
cost-benefit analyses had been applied prospectively to decisions such as whether to
mandate the removal of lead from gasoline, build the Hoover Dam in the Grand Canyon,
and regulate workers' exposure to vinyl chloride, these measures would not have been
implemented even though they are considered to be highly successful in retrospect.[37]
The Clean Air Act has been cited in retrospective studies as a case where benefits
exceeded costs, but the knowledge of the benefits (attributable largely to the benefits of
reducing particulate pollution) was not available until many years later.

 c. Differentiate between a context model and a data model. How are they

represented?
Answer:
A high-level data model in business or for any functional area is an abstract model that
documents and organizes the business data for communication between functional and
technical people. It is used to show the data needed and created by business processes.
A data model in software engineering is an abstract model that documents and organizes
the business data for communication between team members and is used as a plan for
developing applications, specifically how data are stored and accessed.

http://en.wikipedia.org/wiki/Confirmation_bias
http://en.wikipedia.org/wiki/Ford_Pinto
http://en.wikipedia.org/wiki/Wrongful_death
http://en.wikipedia.org/wiki/Public_relations#Negative_PR
http://en.wikipedia.org/wiki/Cost_benefit_analysis#cite_note-obit-35
http://en.wikipedia.org/wiki/Health_economics
http://en.wikipedia.org/wiki/Cost%E2%80%93utility_analysis
http://en.wikipedia.org/wiki/Quality-adjusted_life_year
http://en.wikipedia.org/wiki/Cost_benefit_analysis#cite_note-36
http://en.wikipedia.org/wiki/Leaded_gasoline
http://en.wikipedia.org/wiki/Hoover_Dam
http://en.wikipedia.org/wiki/Grand_Canyon
http://en.wikipedia.org/wiki/Vinyl_chloride
http://en.wikipedia.org/wiki/Cost_benefit_analysis#cite_note-Ackermanetal2005-37
http://en.wikipedia.org/wiki/Clean_Air_Act_%28United_States%29
http://en.wikipedia.org/wiki/Particulate_emissions
http://en.wikipedia.org/wiki/Business
http://en.wikipedia.org/wiki/Abstract_model
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Abstract_model

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 15

According to Hoberman (2009), "A data model is a way finding tool for both business
and IT professionals, which uses a set of symbols and text to precisely explain a subset of
real information to improve communication within the organization and thereby lead to a
more flexible and stable application environment.”
A data model explicitly determines the structure of data or structured data. Typical
applications of data models include database models, design of information systems, and
enabling exchange of data. Usually data models are specified in a data modeling
language.
Types of data models

Database model
A database model is a specification describing how a database is structured and used.
Several such models have been suggested. Common models include:

•

Hierarchical model

•

Relational model

• Flat model: This may not strictly qualify as a data model. The flat (or table)
model consists of a single, two-dimensional array of data elements, where all
members of a given column are assumed to be similar values, and all members of
a row are assumed to be related to one another.

• Hierarchical model: In this model data is organized into a tree-like structure,
implying a single upward link in each record to describe the nesting, and a sort
field to keep the records in a particular order in each same-level list.

• Network model: This model organizes data using two fundamental constructs,
called records and sets. Records contain fields, and sets define one-to-many
relationships between records: one owner, many members.

• Relational model: is a database model based on first-order predicate logic. Its
core idea is to describe a database as a collection of predicates over a finite set of
predicate variables, describing constraints on the possible values and
combinations of values.

http://en.wikipedia.org/wiki/Wayfinding
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Information_system
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/File:Hierarchisches_Datenbankmodell.svg
http://en.wikipedia.org/wiki/File:Hierarchisches_Datenbankmodell.svg
http://en.wikipedia.org/wiki/Hierarchical_model
http://en.wikipedia.org/wiki/File:Relational_model_concepts.png
http://en.wikipedia.org/wiki/File:Relational_model_concepts.png
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Flat_file_database
http://en.wikipedia.org/wiki/Hierarchical_model
http://en.wikipedia.org/wiki/Network_model
http://en.wikipedia.org/wiki/Relational_model

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 16

• Object-relational model: Similar to a relational database model, but objects,
classes and inheritance are directly supported in database schemas and in the
query language.

• Star schema is the simplest style of data warehouse schema. The star schema
consists of a few "fact tables" (possibly only one, justifying the name) referencing
any number of "dimension tables". The star schema is considered an important
special case of the snowflake schema.

Q.4 a. Give key characteristics of agile models. How is extreme programming an
important tool in software engineering discipline? Explain.

Answer:
Agile Modeling (AM) is a practice-based methodology for effective modeling and
documentation of software-based systems. Simply put, Agile Modeling (AM) is a
collection of values, principles, and practices for modeling software that can be applied
on a software development project in an effective and light-weight manner. As you see
in Figure 1 AM is meant to be tailored into other, full-fledged methodologies such as XP
or RUP, enabling you to develop a software process which truly meets your needs.
Figure 1. AM enhances other software processes.

The values of AM, adopting and extending those of eXtreme Programming v1, are
communication, simplicity, feedback, courage, and humility. The keys to modeling
success are to have effective communication between all project stakeholders, to strive to
develop the simplest solution possible that meets all of your needs, to obtain feedback
regarding your efforts often and early, to have the courage to make and stick to your
decisions, and to have the humility to admit that you may not know everything, that
others have value to add to your project efforts.

AM is based on a collection of principles, such as the importance of assuming simplicity
when you are modeling and embracing change as you are working because requirements
will change over time. You should recognize that incremental change of your system
over time enables agility and that you should strive to obtain rapid feedback on your
work to ensure that it accurately reflects the needs of your project stakeholders. You

http://en.wikipedia.org/wiki/Object-relational_model
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/Star_schema
http://www.agilemodeling.com/values.htm
http://www.agilemodeling.com/principles.htm
http://www.agilemodeling.com/practices.htm
http://www.agilemodeling.com/essays/introductionToAM.htm#Figure1#Figure1
http://www.agilemodeling.com/essays/agileModelingXP.htm
http://www.agilemodeling.com/essays/agileModelingRUP.htm

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 17

should model with a purpose, if you don't know why you are working on something or
you don't know what the audience of the model/document actually requires then you
shouldn't be working on it. Furthermore, you need multiple models in your intellectual
toolkit to be effective. A critical concept is that models are not necessarily documents, a
realization that enables you travel light by discarding most of your models once they have
fulfilled their purpose. Agile modelers believe that content is more important than
representation, that there are many ways you can model the same concept yet still get it
right. To be an effective modeler you need to recognize that open and honest
communication is often the best policy to follow to ensure effective teamwork. Finally, a
focus on quality work is important because nobody likes to produce sloppy work and that
local adaptation of AM to meet the exact needs of your environment is important.

To model in an agile manner you will apply AM's practices as appropriate. Fundamental
practices include creating several models in parallel, applying the right artifact(s) for the
situation, and iterating to another artifact to continue moving forward at a steady pace.
Modeling in small increments, and not attempting to create the magical "all
encompassing model" from your ivory tower, is also fundamental to your success as an
agile modeler. Because models are only abstract representations of software, abstractions
that may not be accurate, you should strive to prove it with code to show that your ideas
actually work in practice and not just in theory Active stakeholder participation is critical
to the success of your modeling efforts because your project stakeholders know what they
want and can provide you with the feedback that you require. The principle of assume
simplicity is a supported by the practices of creating simple content by focusing only on
the aspects that you need to model and not attempting to creating a highly detailed model,
depicting models simply via use of simple notations, and using the simplest tools to
create your models. You travel light by single sourcing information, discarding
temporary models and updating models only when it hurts. Communication is enabled
by displaying models publicly, either on a wall or internal web site, through collective
ownership of your project artifacts, through applying modeling standards, and by
modeling with others. Your development efforts are greatly enhanced when you apply
patterns gently. Because you often need to integrate with other systems, including legacy
databases as well as web-based services, you will find that you need to formalize contract
models with the owners of those systems. Read this article for a better understanding of
how AM's practices fit together.

AM and XP?

AM should be tailored into an existing, full lifecycle methodology, in order to
improve its approach to modeling. Because modeling is clearly a part of XP, see
above, the potential exists for AM to add value to an XP project. This assumes of
course that there is possible to tailor AM into XP, I believe it is and argue so below,
and that you can do so without detracting from what currently exists within XP. In
particular, XP’s practices of refactoring and test-first development clearly do a very
good job of filling in for two critical goals – promoting clean design and thinking
through your design before writing code – that are typically associated with
traditional modeling processes. My experience is that both refactoring and test-first

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 18

development are complementary to AM and arguably enablers of several AM
practices, as I argue below.
 How should you approach modeling during development on an XP project? Beck
suggests that you should apply the XP practice of Small Initial Investment and draw a
few pictures at a time. He states that the XP strategy is that anyone can design with
pictures all they want, but as soon as a question is raised that can be answered with code
then the designers must turn to code for the answer. In other works you should then seek
Rapid Feedback to discover whether your pictures are on target by following the AM
practice Prove it With Code.
When should you consider modeling during development on an XP project? Whenever
creating a model is more effective that writing code. In other words, follow the AM
principle maximize stakeholder ROI and the AM practice Apply the Right Artifact(s).
How should you model? Follow AM’s practice Use the Simplest Tools and prefer tools
such as index cards, whiteboards, and Post It notes over more complicated CASE tools.
Simple tools tend to promote interaction and communication, two factors that are critical
to your success. Although XP favors the use of index cards to record user stories, CRC
models, and story tasks there is nothing wrong with using a CASE tool as long as its use
provides positive value to your effort.
XP developers need to recognize that you can model on an XP project, that modeling is
in fact a part of XP already with its existing application of user stories and CRC cards.
More importantly, XP developers must abandon any preconceived notions that they may
have about modeling - that big modeling up front (BMUF) is the only approach to
modeling, that models are permanent documents that must always be updated, that you
need to use complex CASE tools to model, and that the UML defines the only models
available to you - and approach modeling from a new perspective. One such perspective
was presented in this article, that you can tailor Agile Modeling (AM) into a software
process based on extreme Programming (XP) and still remain effective as software
developers.

 b. What is a formal specification in software engineering? Give its uses and
limitations.

Answer:
formal specifications are mathematically based techniques whose purpose are to help
with the implementation of systems and software. They are used to describe a system, to
analyze its behavior, and to aid in its design by verifying key properties of interest
through rigorous and effective reasoning tools.These specifications are formal in the
sense that they have a syntax, their semantics fall within one domain, and they are able to
be used to infer useful information. In each passing decade computer systems have
become increasingly more powerful and as a result they have become more impactful to
society. Because of this, better techniques are needed to assist in the design and
implementation of reliable software. Established engineering disciplines use
mathematical analysis as the foundation of creating and validating product design.
Formal specifications are one such way to achieve this in software engineering. Though
useful, formal methods did not really take over as the standard for software reliability as

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 19

once predicted. Other methods such as testing are more commonly used to enhance code
quality
Testing finds errors (or bugs) in the implementation. It is best to find these as early as
possible because the farther along in a project a bug is found, the more costly it is to fix.
The idea with formal specifications is to minimize the creation of such errors. This is
done by reducing the ambiguity of informal system requirements. By creating a formal
specification, the designers are forced to make a detailed system analysis early on in the
project. This analysis will usually reveal errors or inconsistencies that exist in the
informal system requirements.As a result the chance of subtle errors being introduced and
going undetected in complex software systems is reduced. Finding and correcting these
kinds of errors early in the design stage will help to prevent expensive fixes that may
arise in the future.
Testing and QA contribute to more than 50% of the total development cost of some
projects; through the use of formal specifications certain testing processes may be
automated leading to better and more cost-effective testing.
Uses
Given such a specification, it is possible to use formal verification techniques to
demonstrate that a system design is correct with respect to its specification. This allows
incorrect system designs to be revised before any major investments have been made into
an actual implementation. Another approach is to use provably correct refinement steps
to transform a specification into a design, which is ultimately transformed into an
implementation that is correct by construction.
It is important to note that a formal specification is not an implementation, but rather it
may be used to develop an implementation. Formal specifications describe what a system
should do, not how the system should do it.
A good specification must have some of the following attributes: adequate, internally
consistent, unambiguous, complete, satisfied, minimal
A good specification will have:

• Constructability, manageability and evolvability
• Usability
• Communicability
• Powerful and efficient analysis

One of the main reasons there is interest in formal specifications is that they will provide
an ability to perform proofs on software implementations.These proofs may be used to
validate a specification, verify correctness of design, or to prove that a program satisfies a
specification.
Limitations
A design (or implementation) cannot ever be declared “correct” on its own. It can only
every be “correct with respect to a given specification”. Whether the formal specification
correctly describes the problem to be solved is a separate issue. It is also a difficult issue
to address, since it ultimately concerns the problem constructing abstracted formal
representations of an informal concrete problem domain, and such an abstraction step is

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 20

not amenable to formal proof. However, it is possible to validate a specification by
proving “challenge” theorems concerning properties that the specification is expected to
exhibit. If correct, these theorems reinforce the specifier's understanding of the
specification and its relationship with the underlying problem domain. If not, the
specification probably needs to be changed to better reflect the domain understanding of
those involved with producing (and implementing) the specification.Formal methods of
software development are not widely used in industry. Most companies do not consider it
cost-effective to apply them in their software development processes. This may be for a
variety of reasons, some of which are:

• Time
o High initial start up cost with low measurable returns

• Flexibility
o A lot of software companies use agile methodologies that focus on

flexibility. Doing a formal specification of the whole system up front is
often perceived as being the opposite of flexible. However, there is some
research into the benefits of using formal specifications with "agile"
development

• Complexity
o They require a high level of mathematical expertise and the analytical

skills to understand and apply them effectively
o A solution to this would be to develop tools and models that allow for

these techniques to be implemented but hide the underlying mathematics
• Limited scope

o They do not capture properties of interest for all stakeholders in the project
o They do not do a good job of specifying user interfaces and user

interaction
• Not cost-effective

o This is not entirely true, by limiting their use to only core parts of critical
systems they have shown to be cost-effective

 c. Perform the requirements workflow for a library management system with
respect to a rapid application model.

Answer:
Methodology is processes that focus on what information is collected and how to analyze
it. In our Development and Connect multiple databases we will implement the RAD
methodology. RAD stands for Rapid Application Development as long as product can be
implemented rapidly with high quality. RAD produce the quick and dirty prototype
application or software which satisfied the customer needs and requirements. In RAD the
software developed in series of cycles which probably know time boxes. The main
advantage of RAD is that customer gives the feedback on each completion of phase of
software. Without completion of previous phase the next phase cannot be started.
The expected outcomes of development and connect multiple databases is that it provides
the online Library Management System in which user can get registration and search the
different kind of books on base of different parameter such as BookID, Author Name etc
as long as confirm the booking of book in advance. By connecting the more than two

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 21

databases with each other, system will execute the efficient, reliable and reduce the
database terrific as well as database performance will be increased.

Q.5 a. Explain distributed object architectures with the help of an example. Write

down advantages of the distributed object model.
Answer: Page Number 299-300 of Text Book

 b. Briefly describe event-driven control models. Differentiate between

following two event-driven control models: Broadcast models and
Interrupt-driven models.

Answer: Page Number 282 of Text Book

Q.6 a. Differentiate between function oriented design and object oriented design.

Explain various stages of an object-oriented design.
Answer:
 The differences have to be stated in the following manner:

1. Classes and objects are the building blocks of an object oriented design, whereas
functions and procedures are the building blocks for a function oriented design

2. Objects are the entities that encapsulate some state and provide services to be used
by a client which could be another object, a program or a user. Due to encapsulation
preserving data integrity is easier in object oriented design.

3. An important property of objects is that this state persists in contrast to the data
defined in a function or a procedure which is generally lost once the function stops
being active.

 Differences have to be elaborated for the above points.

 b. What do you mean by component composition? Explain different types of

composition.
Answer: Page Number 477 of Text Book

Q.7 a. Provide a diagram for user interface design life cycle. Explain its steps in

brief.
Answer:

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 22

 b. Write about various essential characteristics of dependable processes.
Answer: Page Number 490 of Text Book

 c. Give a detailed description on fault tolerant architectures.
Answer:
Fault Tolerant Architectures:
Fault tolerance, being one of the four means for guaranteeing dependability, is intended
to ensure the delivery of the correct services in the presence of active faults. It is
implemented by error detection and subsequent system recovery. Error detection finds an
erroneous system state. Following system recovery transforms the system state that
contains one or more errors and (possibly) faults into a state without detected errors and
faults (fault handling). Exceptions and exception handling provide a general framework
for structuring the fault tolerance activities in a system, by focusing on the concept of
exceptional/abnormal behaviour (as opposed to normal behaviour), exception handling
enables specifying actions to be undertaken in the presence of abnormal events. While
typical solutions focus on fault tolerance (and specifically, exception handling) during the
design and implementation phases of the software life-cycle (e.g., Java and Windows NT
exception handling), more recently the need for explicit exception handling solutions
during the entire life cycle has been advocated by some researchers. Several solutions
have been proposed for fault tolerance via exception handling at the software architecture
and component levels. This tutorial describes how the two concepts of fault tolerance and
software architectures have been integrated so far. It is structured in two parts (Overview

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 23

on Fault Tolerance and Exception Handling, and Integrating Fault Tolerance into
Software Architecture) and is based on a survey study on architecting fault tolerant
systems where more than fifteen approaches have been analyzed and classified. The
tutorial concludes identifying those issues that remain still open and require deeper
investigation.
A lockstep fault-tolerant machine uses replicated elements operating in parallel. At any
time, all the replications of each element should be in the same state. The same inputs are
provided to each replication, and the same outputs are expected. The outputs of the
replications are compared using a voting circuit. A machine with two replications of each
element is termed Dual Modular Redundant (DMR). The voting circuit can then only
detect a mismatch and recovery relies on other methods. A machine with three
replications of each element is termed Triple Modular Redundancy (TMR). The voting
circuit can determine which replication is in error when a two-to-one vote is observed. In
this case, the voting circuit can output the correct result, and discard the erroneous
version. After this, the internal state of the erroneous replication is assumed to be
different from that of the other two, and the voting circuit can switch to a DMR mode.
This model can be applied to any larger number of replications.
Lockstep fault tolerant machines are most easily made fully synchronous, with each gate
of each replication making the same state transition on the same edge of the clock, and
the clocks to the replications being exactly in phase. However, it is possible to build
lockstep systems without this requirement.
Bringing the replications into synchrony requires making their internal stored states the
same. They can be started from a fixed initial state, such as the reset state. Alternatively,
the internal state of one replica can be copied to another replica.
One variant of DMR is pair-and-spare. Two replicated elements operate in lockstep as a
pair, with a voting circuit that detects any mismatch between their operations and outputs
a signal indicating that there is an error. Another pair operates exactly the same way. A
final circuit selects the output of the pair that does not proclaim that it is in error. Pair-
and-spare requires four replicas rather than the three of TMR, but has been used
commercially.

Q.8 a. “System testing can be considered as a pure black box test”. Justify your

answer. What are the drivers and stub modules in the context of integration
and unit testing of software product? Why are they required?

Answer:
System testing of software or hardware is testing conducted on a complete, integrated
system to evaluate the system's compliance with its specified requirements. System
testing falls within the scope of black box testing, and as such, should require no
knowledge of the inner design of the code or logic As a rule, system testing takes, as its
input, all of the "integrated" software components that have successfully passed
integration testing and also the software system itself integrated with any applicable
hardware system(s). The purpose of integration testing is to detect any inconsistencies
between the software units that are integrated together (called assemblages) or between
any of the assemblages and the hardware. System testing is a more limited type of
testing; it seeks to detect defects both within the "inter-assemblages" and also within the

http://en.wikipedia.org/wiki/Lockstep_%28computing%29
http://en.wikipedia.org/wiki/Replication_%28computing%29
http://en.wikipedia.org/w/index.php?title=Voting_circuit&action=edit&redlink=1
http://en.wikipedia.org/wiki/Dual_modular_redundant
http://en.wikipedia.org/wiki/Triple_modular_redundancy
http://en.wikipedia.org/wiki/Lockstep_%28computing%29
http://en.wikipedia.org/wiki/Synchronization_%28computer_science%29

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 24

system as a whole. System testing is performed on the entire system in the context of a
Functional Requirement Specification(s) (FRS) and/or a System Requirement
Specification (SRS). System testing tests not only the design, but also the behaviour and
even the believed expectations of the customer. It is also intended to test up to and
beyond the bounds defined in the software/hardware requirements specification.
t is always a good idea to develop and test software in "pieces". But, it may seem
impossible because it is hard to imagine how you can test one "piece" if the other
"pieces" that it uses have not yet been developed (and vice versa). To solve this kindof
diffcult problems we use stubs and drivers.

In white-box testing, we must run the code with predetermined input and check to make
sure that the code produces predetermined outputs. Often testers write stubs and drivers
for white-box testing.

Driver for Testing:

Driver is a the piece of code that passes test cases to another piece of code. Test Harness
or a test driver is supporting code and data used to provide an environment for testing
part of a system in isolation. It can be called as as a software module which is used to
invoke a module under test and provide test inputs, control and, monitor execution, and
report test results or most simplistically a line of code that calls a method and passes that
method a value.

For example, if you wanted to move a fighter on the game, the driver code would be
moveFighter(Fighter, LocationX, LocationY);

This driver code would likely be called from the main method. A white-box test case
would execute this driver line of code and check "fighter.getPosition()" to make sure the
player is now on the expected cell on the board.

Stubs for Testing:

A Stub is a dummy procedure, module or unit that stands in for an unfinished portion of a
system.

Four basic types of Stubs for Top-Down Testing are:

1 Display a trace message
2 Display parameter value(s)
3 Return a value from a table
4 Return table value selected by parameter

A stub is a computer program which is used as a substitute for the body of a software
module that is or will be defined elsewhere or a dummy component or object used to
simulate the behavior of a real component until that component has been developed.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 25

Ultimately, the dummy method would be completed with the proper program logic.
However, developing the stub allows the programmer to call a method in the code being
developed, even if the method does not yet have the desired behavior.

Stubs and drivers are often viewed as throwaway code. However, they do not have to be
thrown away: Stubs can be "filled in" to form the actual method. Drivers can become
automated test cases.

 b. Under what different situations are Cost Estimation Models and
COCOMO Models used? Give a brief description of COCOMO-II model.

Answer:
The COCOMO cost estimation model is used by thousands of software project managers,
and is based on a study of hundreds of software projects. Unlike other cost estimation
models, COCOMO is an open model, so all of the details are published, including:

• The underlying cost estimation equations
• Every assumption made in the model (e.g. "the project will enjoy good

management")
• Every definition (e.g. the precise definition of the Product Design phase of a

project)
• The costs included in an estimate are explicitly stated (e.g. project managers are

included, secretaries aren't)

Because COCOMO is well defined, and because it doesn't rely upon proprietary
estimation algorithms, Costar offers these advantages to its users:

• COCOMO estimates are more objective and repeatable than estimates made by
methods relying on proprietary models

• COCOMO can be calibrated to reflect your software development environment,
and to produce more accurate estimates

Costar is a faithful implementation of the COCOMO model that is easy to use on small
projects, and yet powerful enough to plan and control large projects.
Introduction to the COCOMO Model
The most fundamental calculation in the COCOMO model is the use of the Effort
Equation to estimate the number of Person-Months required to develop a project. Most of
the other COCOMO results, including the estimates for Requirements and Maintenance,
are derived from this quantity.

Source Lines of Code
The COCOMO calculations are based on your estimates of a project's size in Source
Lines of Code (SLOC). SLOC is defined such that:

• Only Source lines that are DELIVERED as part of the product are included -- test
drivers and other support software is excluded

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 26

• SOURCE lines are created by the project staff -- code created by applications
generators is excluded

• One SLOC is one logical line of code
• Declarations are counted as SLOC
• Comments are not counted as SLOC

The original COCOMO 81 model was defined in terms of Delivered Source Instructions,
which are very similar to SLOC. The major difference between DSI and SLOC is that a
single Source Line of Code may be several physical lines. For example, an "if-then-else"
statement would be counted as one SLOC, but might be counted as several DSI.

The Scale Drivers
In the COCOMO II model, some of the most important factors contributing to a project's
duration and cost are the Scale Drivers. You set each Scale Driver to describe your
project; these Scale Drivers determine the exponent used in the Effort Equation.
The 5 Scale Drivers are:

• Precedentedness
• Development Flexibility
• Architecture / Risk Resolution
• Team Cohesion
• Process Maturity

Note that the Scale Drivers have replaced the Development Mode of COCOMO 81. The
first two Scale Drivers, Precedentedness and Development Flexibility actually describe
much the same influences that the original Development Mode did.

Cost Drivers
COCOMO II has 17 cost drivers ï¿½ you assess your project, development environment,
and team to set each cost driver. The cost drivers are multiplicative factors that determine
the effort required to complete your software project. For example, if your project will
develop software that controls an airplane's flight, you would set the Required Software
Reliability (RELY) cost driver to Very High. That rating corresponds to an effort
multiplier of 1.26, meaning that your project will require 26% more effort than a typical
software project.
Click here to see which Cost Drivers are in which Costar models.
COCOMO II defines each of the cost drivers, and the Effort Multiplier associated with
each rating. Check the Costar help for details about the definitions and how to set the cost
drivers.

COCOMO II Effort Equation
The COCOMO II model makes its estimates of required effort (measured in Person-
Months ï¿½ PM) based primarily on your estimate of the software project's size (as
measured in thousands of SLOC, KSLOC)):

http://www.softstarsystems.com/cdtable.htm

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 27

 Effort = 2.94 * EAF * (KSLOC)E

Where
 EAF Is the Effort Adjustment Factor derived from the Cost Drivers
 E Is an exponent derived from the five Scale Drivers

As an example, a project with all Nominal Cost Drivers and Scale Drivers would have an
EAF of 1.00 and exponent, E, of 1.0997. Assuming that the project is projected to consist
of 8,000 source lines of code, COCOMO II estimates that 28.9 Person-Months of effort is
required to complete it:

 Effort = 2.94 * (1.0) * (8)1.0997 = 28.9 Person-Months

Effort Adjustment Factor
The Effort Adjustment Factor in the effort equation is simply the product of the effort
multipliers corresponding to each of the cost drivers for your project.

For example, if your project is rated Very High for Complexity (effort multiplier of 1.34),
and Low for Language & Tools Experience (effort multiplier of 1.09), and all of the other
cost drivers are rated to be Nominal (effort multiplier of 1.00), the EAF is the product of
1.34 and 1.09.

 Effort Adjustment Factor = EAF = 1.34 * 1.09 = 1.46

 Effort = 2.94 * (1.46) * (8)1.0997 = 42.3 Person-Months

COCOMO II Schedule Equation
The COCOMO II schedule equation predicts the number of months required to complete
your software project. The duration of a project is based on the effort predicted by the
effort equation:

 Duration = 3.67 * (Effort)SE

Where
 Effort Is the effort from the COCOMO II effort equation
 SE Is the schedule equation exponent derived from the five Scale Drivers

Continuing the example, and substituting the exponent of 0.3179 that is calculated from
the scale drivers, yields an estimate of just over a year, and an average staffing of
between 3 and 4 people:

 Duration = 3.67 * (42.3)0.3179 = 12.1 months

 Average staffing = (42.3 Person-Months) / (12.1 Months) = 3.5 people
COCOMO II

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 28

COCOMO II is tuned to modern software life cycles. The original COCOMO model has
been very successful, but it doesn't apply to newer software development practices as
well as it does to traditional practices. COCOMO II targets the software projects of the
1990s and 2000s, and will continue to evolve over the next few years.
COCOMO II is really three different models:

• The Application Composition Model

Suitable for projects built with modern GUI-builder tools. Based on new Object
Points.

• The Early Design Model

You can use this model to get rough estimates of a project's cost and duration
before you've determined it's entire architecture. It uses a small set of new Cost
Drivers, and new estimating equations. Based on Unadjusted Function Points or
KSLOC.

• The Post-Architecture Model

This is the most detailed COCOMO II model. You'll use it after you've developed
your project's overall architecture. It has new cost drivers, new line counting
rules, and new equations.

 c. Explain, with the help of a diagram the process of software validation.
Answer:
Software Validation starts with a user requirement document (URS). When either
management by policy; or an employee by cause; requests that a controlled process is
instigated or an existing controlled process requires a serious modification (miner
modification would be controlled under change control), a User Requirement
Specification (URS) document is raised. Over the course of several meeting the URS is
fleshed out to document all aspects of the requirement. It is important that the document
is properly scoped in order that the procurement , installation, commissioning, validation,
user training, maintenance, calibration and cleaning tasks are all investigated and defined
adequately.

To scope and define an adequate validation procedure the URS has to be detailed
sufficiently for various assessments to be made. The main assessment that concerns us
with software validation documentation is the risk assessment. This assessment is only
concerned with ensuring that the degree of validation that is proposed; is compliant with
the regulatory requirements.

So at this early stage it is required to execute a risk assessment against the URS to see
what category the software validation is going to be.

http://www.softstarsystems.com/overview.htm

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 29

Q.9 a. Discuss various key process areas of CMM at various maturity levels.
Answer:
The Capability Maturity Model for Software (CMM) is a framework that describes the
key elements of an effective software process. The CMM describes an evolutionary
improvement path from an ad hoc, immature process to a mature, disciplined process.

The CMM covers practices for planning, engineering, and managing software
development and maintenance. When followed, these key practices improve the ability of
organizations to meet goals for cost, schedule, functionality, and product quality.

The CMM establishes a yardstick against which it is possible to judge, in a repeatable
way, the maturity of an organization's software process and compare it to the state of the
practice of the industry. The CMM can also be used by an organization to plan
improvements to its software process.
The CMM is composed of five maturity levels. With the exception of Level 1, each
maturity level is composed of several key process areas. Each key process area is
organized into five sections called common features. The common features specify the

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 30

key practices that, when collectively addressed, accomplish the goals of the key process
area. This structure of the CMM is illustrated in Figure

The components of the CMM include:
Maturity levels
A maturity level is a well-defined evolutionary plateau toward achieving a mature
software process. The five maturity levels provide the top-level structure of the CMM.
Process capability
Software process capability describes the range of expected results that can be achieved
by following a software process. The software process capability of an organization
provides one means of predicting the most likely outcomes to be expected from the next
software project the organization undertakes.
Key process areas
Each maturity level is composed of key process areas. Each key process area identifies a
cluster of related activities that, when performed collectively, achieve a set of goals
considered important for establishing process capability at that maturity level. The key
process areas have been defined to reside at a single maturity level. For example, one of
the key process areas for Level 2 is Software Project Planning.
Goals

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 31

The goals summarize the key practices of a key process area and can be used to
determine whether an organization or project has effectively implemented the key
process area. The goals signify the scope, boundaries, and intent of each key process area.

 b. Describe following static software product metrics:
 (i) Fan-in / Fan-out
 (ii) Length of code
 (iii) Length of identifiers
Answer: Page Number 684 of Text Book

 c. Explain the following terms:
 (i) Change request form

 (ii) Change Control process
Answer:

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 32

There are many change control methods a project manager may use. Any good change
control methodology will have four (4) components or subsystems. These subsystems
are:

1. Change Request Form
2. Change Review and Evaluation
3. Change Priority and Classification
4. Change Approval

Figure 1 illustrates a typical change control process flow. Please note that there are two
(2) separate reviews that occur during the change control process. These reviews are:

 First, to validate the change proposal is justified, and
 Second, to access the impact of the change on the project.

 Change Request Form
Evaluating the impact of a proposed change takes time. Therefore, it is important that
change requests be well thought out before being submitted. The project manager is the
filter point at which unnecessary and ill thought out change requests are rejected.
A project change request form should be created and approved prior to the project’s
startup. At a minimum, the change request form should contain the following
information:

 Originator’s name and phone number,
 Submission date,
 Description of the problem that the change addresses,
 Description of the change,
 Justification for the change,
 Date the change is needed (if applicable),
 Change category (type of change or reason for change)1,
 Impact write-up addressing the affect the change has on project schedule and

budget,
 Approval disposition (accepted or rejected boxes),
 Project Manager’s signature and date,
 Project Sponsor’s approval, signature, and date, and
 Date change is updated into the Change Request Log and updated into the

project plan.

Under all circumstances, the project manager is the channel through which Change
Requests are funneled. Any Change Request that does not have the project manager’s
signature is immediately returned to the submitted.

AE63/AT63 SOFTWARE ENGINEERING DEC 2013

© IETE 33

A change review committee, or board, must be established to evaluate all change
requests. The number of participants on the committee, or board, is dependent upon the
project size and complexity. On a small project, the project manager may review and
approve change requests. On larger complex projects, a review committee or board may
be more appropriate.The change review committee or board is made up of a cross
selection of technical team members. Review committee members should be selected
who have the expertise to truly assess the impact of the change request on the project’s
scope.

Text Book

Software Engineering, Ian Sommerville, 7th edition, Pearson Education, 2004

Change Proposal
 is written

Change Proposal
 is written

Change Proposal
is reviewed

Change Proposal
is reviewed

Rework Proposal
Rework Proposal

Change proposal is
designed and

documented, and an
implementation

schedule is created

Change proposal is
designed and

documented, and an
implementation

schedule is created

Change Proposal
is reviewed

Change Proposal
is reviewed

Rework Proposal
Rework Proposal

Change Proposal
is implemented

Change Proposal
is implemented

Rework

Rejected
Stop

Accepted

Rejected
Stop

Accepted

	1.1 Purpose
	1.2 Scope
	1.3 Definitions, Acronyms, and Abbreviations
	1.4 References
	1.5 Overview
	2. General Description
	2.1 Product Perspective
	2.2 Product Functions
	2.3 User Characteristics
	2.4 General Constraints
	2.5 Assumptions and Dependencies

	3. Specific Requirements
	3.1 External Interface Requirements
	3.1.1 User Interfaces
	3.1.2 Hardware Interfaces
	3.1.3 Software Interfaces
	3.1.4 Communications Interfaces

	3.2 Functional Requirements
	3.2.1 <Functional Requirement or Feature #1>
	3.2.2 <Functional Requirement or Feature #2>

	3.3 Use Cases
	3.5 Non-Functional Requirements
	3.5.1 Performance
	3.5.2 Reliability
	3.5.3 Availability
	3.5.4 Security
	3.5.5 Maintainability
	3.5.6 Portability

	3.6 Inverse Requirements
	3.7 Design Constraints
	3.8 Logical Database Requirements
	3.9 Other Requirements

	4. Analysis Models
	4.1 Sequence Diagrams
	4.3 Data Flow Diagrams (DFD)
	4.2 State-Transition Diagrams (STD)

	5. Change Management Process
	A. Appendices
	Technology and system feasibility
	Legal feasibility
	Operational feasibility
	Schedule feasibility
	Types of data models
	Database model
	AM and XP?
	AM should be tailored into an existing, full lifecycle methodology, in order to improve its approach to modeling. Because modeling is clearly a part of XP, see above, the potential exists for AM to add value to an XP project. This assumes of course ...

	Uses
	Limitations
	Introduction to the COCOMO Model
	Source Lines of Code
	The Scale Drivers
	Cost Drivers
	COCOMO II Effort Equation
	Effort Adjustment Factor
	COCOMO II Schedule Equation

	COCOMO II

	Change Request Form

